Monday, January 4, 2016

AI for Security Vulnerability and Adversarial Neural Cryptography


Cross Site Request Forgery
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)

Learning to Protect Communications with Adversarial Neural Cryptography
https://arxiv.org/abs/1610.06918
Martín Abadi, David G. Andersen (Google Brain)
(Submitted on 21 Oct 2016)
We ask whether neural networks can learn to use secret keys to protect information from other neural networks. Specifically, we focus on ensuring confidentiality properties in a multiagent system, and we specify those properties in terms of an adversary. Thus, a system may consist of neural networks named Alice and Bob, and we aim to limit what a third neural network named Eve learns from eavesdropping on the communication between Alice and Bob. We do not prescribe specific cryptographic algorithms to these neural networks; instead, we train end-to-end, adversarially. We demonstrate that the neural networks can learn how to perform forms of encryption and decryption, and also how to apply these operations selectively in order to meet confidentiality goals.

No comments:

Post a Comment