Thursday, September 4, 2014

NEURAL PROGRAMMER-INTERPRETERS


Published as a conference paper at ICLR 2016
http://arxiv.org/pdf/1511.06279v4.pdf

NEURAL PROGRAMMER-INTERPRETERS
Scott Reed & Nando de Freitas 
Google DeepMind London, UK
 scott.ellison.reed@gmail.com
 nandodefreitas@google.com
ABSTRACT
We propose the neural programmer-interpreter (NPI): a recurrent and compositional neural network that learns to represent and execute programs. NPI has three learnable components: a task-agnostic recurrent core, a persistent key-value program memory, and domain-specific encoders that enable a single NPI to operate in multiple perceptually diverse environments with distinct affordances. By learning to compose lower-level programs to express higher-level programs, NPI reduces sample complexity and increases generalization ability compared to sequence-tosequence LSTMs. The program memory allows efficient learning of additional tasks by building on existing programs. NPI can also harness the environment (e.g. a scratch pad with read-write pointers) to cache intermediate results of computation, lessening the long-term memory burden on recurrent hidden units. In this work we train the NPI with fully-supervised execution traces; each program has example sequences of calls to the immediate subprograms conditioned on the input. Rather than training on a huge number of relatively weak labels, NPI learns from a small number of rich examples. We demonstrate the capability of our model to learn several types of compositional programs: addition, sorting, and canonicalizing 3D models. Furthermore, a single NPI learns to execute these programs and all 21 associated subprograms.

No comments:

Post a Comment